Code: 19EC4701A

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

SATELLITE COMMUNICATIONS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1. a)	Define the terms (i) Prograde orbit and	L1	CO1
	(ii) Argument of perigee.		
1. b)	GSAT-30 satellite launched by India is used for	L1	CO2
	which application.		
1. c)	Write the various types of transponders used with	L1	CO1
	a satellite.		
1. d)	Why uplink and down link frequencies are	L1	CO3
	different for a satellite system?		
1. e)	Define CDMA and mention the types.	L1	CO4

PART - B

		BL	СО	Max. Marks	
UNIT-I					
2	Explain briefly various services provided by a satellite.	L2	CO1	12 M	

		OR			
3		scuss frequency bands allocated to various ellite services.	L2	CO1	12 M
		UNIT-II		I	<u> </u>
4	a)	State the Kepler's laws. Discuss its importance in satellite communications.	L2	CO1	8 M
	b)	Assume a satellite is rotating in an elliptical orbit with a perigee of 1000 km and an apogee of 4000 km. Calculate the period of orbit if the mean earth radius is 6000km.	L3	CO1	4 M
	I	OR			
5	a)	Describe the orbital effects in communication system performance.	L2	CO2	6 M
	b)	Explain the look angles with respect to a satellite using relevant equations.	L2	CO2	6 M
		UNIT-III		1	
6	a)	What are the various satellite subsystems? Explain the communication subsystem with a neat block diagram.	L2	CO1	8 M
	b)	Draw and explain the earth station technology diagram.	L2	CO2	4 M
		OR	1	1	1
7	a)	Explain telemetry, tracking, command and monitoring.	L2	CO2	8 M
	b)	Discuss briefly about satellite antennas.	L2	CO2	4 M
		UNIT-IV			

8	a)	Derive the expression for the satellite link	L3	CO3	6 M		
		equation.					
	b)	Derive the expression for G/T ratio of a	L3	CO3	6 M		
		satellite link.					
		OR					
9	Cal	culate the system noise temperature of a	L3	CO3	12 M		
	4 GHz receiver having the following gains						
	and noise temperatures. T_{in} = 25K, T_{RF} = 50K,						
	T_{M} = 500K, T_{IF} = 1000K, G_{RF} = 23dB, G_{m} = 0dB						
	and	G_F = 30dB. Derive the equation for system					
	noi	se temperature.					
		UNIT-V					
10	a)	Illustrate about Spread spectrum	L2	CO4	6 M		
		transmission and reception?	112		0 101		
	b)	Compare FDMA, TDMA and CDMA	L2	CO4	6 M		
		techniques.			0 1/1		
		OR					
11	a)	With a neat block diagram explain frame	L2	CO ₁	6 M		
		and burst formats for a TDMA system.					
	b)	Assume that the TDMA system uses a	L3	CO4	6 M		
		125µs frame failure. Calculate the					
		number of channels/earth station when a					
		5 μs preamble is added to the beginning					
		of each earth station transmission.					